An Efficient Procedure for Marker-Free Mutagenesis of S. coelicolor by Site-Specific Recombination for Secondary Metabolite Overproduction
نویسندگان
چکیده
Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.
منابع مشابه
Overproduction of Clavulanic Acid by UV Mutagenesis of Streptomyces clavuligerus
Clavulanic acid is produced industrially by fermentation of Streptomyces clavuligerus and researches have increased its production by strain improvement, recombinant DNA technology, and media composition and growth condition optimization. The main objective of this study was to increase the level of clavulanic acid production from Streptomyces clavuligerus (DSM 738), using UV irradiation. After...
متن کاملOverproduction of Clavulanic Acid by UV Mutagenesis of Streptomyces clavuligerus
Clavulanic acid is produced industrially by fermentation of Streptomyces clavuligerus and researches have increased its production by strain improvement, recombinant DNA technology, and media composition and growth condition optimization. The main objective of this study was to increase the level of clavulanic acid production from Streptomyces clavuligerus (DSM 738), using UV irradiation. After...
متن کاملSelectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملUV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition
Objective(s):[p1] This study highlights xylanase overproduction from Bacillus mojavensis via UV mutagenesis and optimization of the production process. Materials and Methods:Bacillus mojavenis PTCC 1723 underwent UV radiation. Mutants’ primary screening was based on the enhanced Hollow Zone Diameter/ Colony Diameter Ration (H/C ratios) of the colonies in comparison with the wild strain on Xyla...
متن کاملSystematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production.
The model organism Streptomyces coelicolor represents a genus that produces a vast range of bioactive secondary metabolites. We describe a versatile procedure for systematic and comprehensive mutagenesis of the S. coelicolor genome. The high-throughput process relies on in vitro transposon mutagenesis of an ordered cosmid library; mutagenized cosmids with fully characterized insertions are then...
متن کامل